Module tf.convert.pagexml
Expand source code Browse git
import sys
from subprocess import run
from ..capable import CheckImport
from ..core.command import readArgs
from ..core.files import (
fileOpen,
abspath,
dirNm,
dirContents,
dirExists,
fileExists,
fileCopy,
initTree,
getLocation,
readYaml,
writeYaml,
expanduser as ex,
unexpanduser as ux,
APP_CONFIG
)
from ..core.generic import AttrDict
from ..core.helpers import console, versionSort, mergeDict
from ..core.timestamp import AUTO, DEEP, TERSE
from ..parameters import BRANCH_DEFAULT_NEW
from ..fabric import Fabric
from ..convert.walker import CV
from .helpers import FILE, PAGE, DOC, REGION, LINE, NODE, tokenize, setUp
TOKEN = "token"
SOFT_HYPHEN_CHARS = {"¬", "\u00ad"}
TASKS_EXCLUDED = {"apptoken", "browse"}
(HELP, TASKS, PARAMS, FLAGS) = setUp("source")
def diverge(cv, s, rtx, rsp, ltx, lsp):
if ltx != rtx:
cv.feature(s, str=ltx, rstr=rtx)
if lsp != rsp:
cv.feature(s, after=lsp, rafter=rsp)
def tokenLogic(cv, s, token, hangover, isFirst, isSecondLast, isLast):
(rtx, rsp) = token
same = not isLast and not isSecondLast and (not isFirst or hangover is None)
if same:
cv.feature(s, str=rtx, after=rsp)
# cv.feature(s, str=rtx)
# if rsp == "\n":
# cv.feature(s, after=" ", rafter=rsp)
# else:
# cv.feature(s, after=rsp)
else:
cv.feature(s, str="", after="", rstr=rtx, rafter=rsp)
if isFirst and hangover:
hangover[3] += rtx
# hangover[4] = " " if rsp == "\n" else rsp
hangover[4] = rsp
if isSecondLast:
if hangover is None:
hangover = [s, rtx, rsp, rtx, rsp]
else:
hangover[3] += rtx
# hangover[4] = " " if rsp == "\n" else rsp
hangover[4] = rsp
else:
if isLast:
cv.feature(s, str="", after="", rstr=rtx, rafter=rsp)
elif hangover is not None:
diverge(cv, *hangover)
hangover = None
return hangover
# WALKERS
def emptySlot(cv):
s = cv.slot()
cv.feature(s, rstr="", rafter="", str="", after="")
def linebreakSlot(cv):
s = cv.slot()
cv.feature(s, rstr="", rafter="\n", str="", after="")
def walkObject(cv, cur, xObj):
"""Internal function to deal with a single element.
Will be called recursively.
Parameters
----------
cv: object
The converter object, needed to issue actions.
cur: dict
Various pieces of data collected during walking
and relevant for some next steps in the walk.
The subdictionary `cur["node"]` is used to store the currently generated
nodes by node type.
bj
xode: object
An PageXML object.
"""
tp = xObj.main_type
xId = xObj.id
box = AttrDict(xObj.coords.box)
isScan = tp == "scan"
isRegion = tp == "text_region"
isLine = tp == LINE
nTp = PAGE if isScan else REGION if isRegion else LINE if isLine else tp
nd = cv.node(nTp)
cur[NODE][nTp] = nd
cv.feature(nd, id=xId, x=box.x, y=box.y, w=box.w, h=box.h)
if isLine:
cur["line"] += 1
cv.feature(nd, line=cur["line"])
tokens = tokenize(xObj.text or "")
nTokens = len(tokens)
slots = []
hangover = cur["hangover"]
hasHyphen = len(tokens) > 0 and tokens[-1][0] in SOFT_HYPHEN_CHARS
for token in tokens:
s = cv.slot()
slots.append(s)
isFirst = len(slots) == 1
isLast = hasHyphen and len(slots) == nTokens
isSecondLast = hasHyphen and len(slots) == nTokens - 1
hangover = tokenLogic(cv, s, token, hangover, isFirst, isSecondLast, isLast)
cur["hangover"] = hangover
hangover = None
linebreakSlot(cv)
elif isScan or isRegion:
if isScan:
cv.feature(nd, page=cur["page"])
hangover = cur["hangover"]
for yObj in xObj.get_text_regions_in_reading_order():
walkObject(cv, cur, yObj)
for yObj in xObj.lines:
walkObject(cv, cur, yObj)
else:
cv.stop(f"UNKNOWN TYPE {tp}")
if not cv.linked(nd):
emptySlot(cv)
cv.terminate(nd)
class PageXML(CheckImport):
def __init__(
self,
sourceDir,
repoDir,
source=PARAMS["sourceBase"][1],
reportDir=PARAMS["reportDir"][1],
tf=PARAMS["tf"][1],
verbose=FLAGS["verbose"][1],
doc=FLAGS["doc"][1],
):
"""Converts PageXML to TF.
Below we describe how to control the conversion machinery.
Based on current directory from where the script is called,
it defines all the ingredients to carry out
a `tf.convert.walker` conversion of the PageXML input.
This function is assumed to work in the context of a repository,
i.e. a directory on your computer relative to which the input directory exists,
and various output directories: `tf`, `app`, `docs`.
The `repoDir` must be at
```
~/backend/org/repo/relative
```
where
* `~` is your home directory;
* `backend` is an online back-end name,
like `github`, `gitlab`, `git.huc.knaw.nl`;
* `org` is an organization, person, or group in the back-end;
* `repo` is a repository in the `org`.
* `relative` is a directory path within the repo (0 or more components)
This is only about the directory structure on your local computer;
it is not required that you have online incarnations of your repository
in that back-end.
Even your local repository does not have to be a git repository.
The only thing that matters is that the full path to your repo can be parsed
as a sequence of `home/backend/org/repo/relative`.
Relative to this directory the program expects and creates
input / output directories.
## source/version directory
The source directory is specified by `sourceDir`, and within it are version
directories.
## Document directories
These are the top-level directories within the version directories.
They correspond to individual documents. Documents typically contain
a set of pages.
## Input directories per document
* `image`: contain the scan images
* `meta`: contain metadata files
* `page`: contain the PageXML files
The files in `image` and `page` have names that consist of a 4-digit
number with leading zeros, and any two files with the same name in
`image` and `page` represent the same document.
## Output directories
### `tf`
The directory under which the TF output file (with extension `.tf`)
are placed.
If it does not exist, it will be created.
The TF files will be generated in a folder named by a version number,
passed as `tfVersion`.
### `app` and `docs`
Location of additional TF app configuration and documentation files.
If they do not exist, they will be created with some sensible default
settings and generated documentation.
These settings can be overridden in the `app/config_custom.yaml` file.
Also a default `display.css` file and a logo are added.
### `docs`
Location of additional documentation.
This can be generated or hand-written material, or a mixture of the two.
Parameters
----------
sourceDir: string
The location of the source directory
repoDir: string
The location of the target repo where the TF data is generated.
source: string, optional ""
If empty, use the latest version under the `source` directory with sources.
Otherwise it should be a valid integer, and it is the index in the
sorted list of versions there.
* `0` or `latest`: latest version;
* `-1`, `-2`, ... : previous version, version before previous, ...;
* `1`, `2`, ...: first version, second version, ....
* everything else that is not a number is an explicit version
If the value cannot be parsed as an integer, it is used as the exact
version name.
tf: string, optional ""
If empty, the TF version used will be the latest one under the `tf`
directory.
If it can be parsed as the integers 1, 2, or 3 it will bump the latest
relevant TF version:
* `0` or `latest`: overwrite the latest version
* `1` will bump the major version
* `2` will bump the intermediate version
* `3` will bump the minor version
* everything else is an explicit version
Otherwise, the value is taken as the exact version name.
verbose: integer, optional -1
Produce no (-1), some (0) or many (1) progress and reporting messages
"""
super().__init__("pagexml")
if self.importOK(hint=True):
pagexml = self.importGet()
self.parsePage = pagexml.parse_pagexml_file
else:
return
self.good = True
self.verbose = verbose
self.chosenDoc = doc
(backend, org, repo, relative) = getLocation(targetDir=ex(repoDir))
if any(s is None for s in (backend, org, repo, relative)):
console(
(
"Not working in a repo: "
f"backend={backend} org={org} repo={repo} relative={relative}"
),
error=True
)
self.good = False
return
if verbose == 1:
console(
f"Working in repository {org}/{repo}{relative} in back-end {backend}"
)
base = ex(f"~/{backend}")
repoDir = f"{base}/{org}/{repo}"
refDir = f"{repoDir}{relative}"
convertSpec = f"{refDir}/pagexml.yaml"
settings = readYaml(asFile=convertSpec, plain=False)
self.settings = settings
appDir = f"{refDir}/app"
metaDir = f"{refDir}/meta"
tfDir = f"{refDir}/tf"
tfVersionFile = f"{refDir}/tfVersions.txt"
sourceVersions = sorted(dirContents(metaDir)[1], key=versionSort)
nSourceVersions = len(sourceVersions)
if source in {"latest", "", "0", 0} or str(source).lstrip("-").isdecimal():
sourceIndex = (0 if source == "latest" else int(source)) - 1
try:
sourceVersion = sourceVersions[sourceIndex]
except Exception:
absIndex = sourceIndex + (nSourceVersions if sourceIndex < 0 else 0) + 1
console(
(
f"no item in {absIndex} in {nSourceVersions} source versions "
f"in {ux(metaDir)}"
)
if len(sourceVersions)
else f"no source versions in {ux(metaDir)}",
error=True,
)
self.good = False
return
else:
sourceVersion = source
metaPath = f"{metaDir}/{sourceVersion}"
if not dirExists(metaPath):
console(
f"source version {sourceVersion} does not exists in {ux(metaDir)}",
error=True,
)
self.good = False
return
sourceStatuses = {tv: i for (i, tv) in enumerate(reversed(sourceVersions))}
sourceStatus = sourceStatuses[sourceVersion]
sourceStatusRep = (
"most recent"
if sourceStatus == 0
else "previous"
if sourceStatus == 1
else f"{sourceStatus - 1} before previous"
)
if sourceStatus == len(sourceVersions) - 1 and len(sourceVersions) > 1:
sourceStatusRep = "oldest"
if verbose >= 0:
console(f"PageXML data version is {sourceVersion} ({sourceStatusRep})")
if fileExists(tfVersionFile):
with fileOpen(tfVersionFile) as fh:
latestTfVersion = fh.read().strip() or "0.0.0"
else:
latestTfVersion = "0.0.0"
with fileOpen(tfVersionFile, mode="w") as fh:
fh.write(latestTfVersion)
writeVersion = False
if tf in {"latest", "", "0", 0}:
tfVersion = latestTfVersion
vRep = "latest"
elif tf in {"1", "2", "3", 1, 2, 3}:
bump = int(tf)
parts = latestTfVersion.split(".")
def getVer(b):
return int(parts[b])
def setVer(b, val):
parts[b] = val
if bump > len(parts):
console(
f"Cannot bump part {bump} of latest TF version {latestTfVersion}",
error=True,
)
self.good = False
return
else:
b1 = bump - 1
old = getVer(b1)
setVer(b1, old + 1)
for b in range(b1 + 1, len(parts)):
setVer(b, 0)
tfVersion = ".".join(str(p) for p in parts)
vRep = (
"major" if bump == 1 else "intermediate" if bump == 2 else "minor"
)
vRep = f"next {vRep}"
writeVersion = True
else:
tfVersion = tf
status = "existing" if dirExists(f"{tfDir}/{tfVersion}") else "new"
vRep = f"explicit {status}"
writeVersion = True
if writeVersion:
with fileOpen(tfVersionFile, mode="w") as fh:
fh.write(tfVersion)
if verbose >= 0:
console(f"TF data version is {tfVersion} ({vRep})")
self.refDir = refDir
self.sourceVersion = sourceVersion
self.sourceDir = ex(sourceDir)
self.tfVersion = tfVersion
self.tfDir = tfDir
self.appDir = appDir
self.backend = backend
self.org = org
self.repo = repo
self.relative = relative
myDir = dirNm(abspath(__file__))
self.myDir = myDir
self.slotType = TOKEN
levelNames = ("doc", "page", "line")
sectionFeatures = ",".join(levelNames)
sectionTypes = ",".join(levelNames)
textFeatures = "{str}{after}"
rawTextFeatures = "{rstr/str}{rafter/after}"
otext = {
"fmt:text-orig-full": rawTextFeatures,
"fmt:text-logic-full": textFeatures,
"sectionFeatures": sectionFeatures,
"sectionTypes": sectionTypes,
}
self.otext = otext
self.generic = dict(
project="TransLatin",
conversion="KNAW/HuC TeamText",
conversionTF="Dirk Roorda",
)
featureMeta = dict(
id=dict(description="the id of the corresponding pagexml object"),
x=dict(description="the leftmost x coordinate of the pagexml object"),
y=dict(description="the lowest y coordinate of the pagexml object"),
w=dict(description="the width of the pagexml object"),
h=dict(description="the height of the pagexml object"),
rstr=dict(
description=(
"the physical text of a token, "
"if it is different from the logical text"
),
),
str=dict(description="the logical text of a token"),
rafter=dict(
description=(
"the physical text after a token till the next token, "
"if it is different from the logical after-text"
),
),
after=dict(
description=(
"the logical text after a token till the next logical token,"
),
),
page=dict(description="the number of the page within the document"),
line=dict(description="the number of the line within the page"),
)
self.intFeatures = {"page", "line", "x", "y", "w", "h"}
customFeatureMeta = settings.featureMeta or {}
for k, v in customFeatureMeta.items():
featureMeta[k] = v
self.featureMeta = featureMeta
def getDirector(self, doc, docMeta, pageSource, pageFiles):
"""Factory for the director function.
The `tf.convert.walker` relies on a corpus dependent `director` function
that walks through the source data and spits out actions that
produces the TF dataset.
Also some special additions need to be programmed, such as an extra section
level, word boundaries, etc.
We collect all needed data, store it, and define a local director function
that has access to this data.
Returns
-------
function
The local director function that has been constructed.
"""
parsePage = self.parsePage
def director(cv):
"""Director function.
Here we program a walk through the PageXML sources.
At every step of the walk we fire some actions that build TF nodes
and assign features for them.
Parameters
----------
cv: object
The converter object, needed to issue actions.
"""
featureMeta = self.featureMeta
cur = {}
cur[NODE] = {}
nd = cv.node(DOC)
cur[NODE][DOC] = nd
cv.feature(nd, doc=doc, **docMeta)
cur["hangover"] = None
for pageFile in pageFiles:
pagePath = f"{pageSource}/{pageFile}"
pageNr = int(pageFile.split(".", 1)[0])
pageDoc = parsePage(pagePath)
cur["page"] = pageNr
cur["line"] = 0
walkObject(cv, cur, pageDoc)
hangover = cur["hangover"]
if hangover is not None:
diverge(cv, *hangover)
cv.terminate(nd)
for fName in featureMeta:
if not cv.occurs(fName):
cv.meta(fName)
return director
def getConverter(self, doc):
"""Initializes a converter.
Returns
-------
object
The `tf.convert.walker.CV` converter object, initialized.
"""
verbose = self.verbose
tfDir = self.tfDir
tfVersion = self.tfVersion
silent = AUTO if verbose == 1 else TERSE if verbose == 0 else DEEP
TF = Fabric(locations=f"{tfDir}/{doc}/{tfVersion}", silent=silent)
return CV(TF, silent=silent)
def convertTask(self):
"""Implementation of the "convert" task.
It sets up the `tf.convert.walker` machinery and runs it.
Returns
-------
boolean
Whether the conversion was successful.
"""
if not self.importOK():
return
if not self.good:
return
verbose = self.verbose
chosenDoc = self.chosenDoc
slotType = self.slotType
generic = self.generic
otext = self.otext
featureMeta = self.featureMeta
intFeatures = self.intFeatures
sourceDir = self.sourceDir
sourceVersion = self.sourceVersion
tfDir = self.tfDir
tfVersion = self.tfVersion
if verbose == 1:
console(
f"PageXML to TF converting: {ux(sourceDir)}/Mxx/{sourceVersion}"
f" ==> {ux(tfDir)}/Mxx/{tfVersion}"
)
initTree(tfDir, fresh=True, gentle=True)
docDirs = sorted(dirContents(sourceDir)[1], key=lambda x: (x[0], int(x[1:])))
for doc in docDirs:
if chosenDoc is not None and chosenDoc != doc:
continue
pageSource = f"{sourceDir}/{doc}/{sourceVersion}/page"
pageFiles = sorted(dirContents(pageSource)[0])
if len(pageFiles) == 0:
continue
console(f"\t\t{doc:>5} ... {len(pageFiles):>8} pages")
metaFile = f"{sourceDir}/{doc}/{sourceVersion}/meta/metadata.yaml"
docMeta = readYaml(asFile=metaFile)
docMeta.title = (docMeta.title or "").replace("_", " ")
docMeta.url = (docMeta.url or "").replace("&", "&")
cv = self.getConverter(doc)
if not cv.walk(
self.getDirector(doc, docMeta, pageSource, pageFiles),
slotType,
otext=otext,
generic=generic,
intFeatures=intFeatures,
featureMeta=featureMeta,
generateTf=True,
):
self.good = False
def loadTask(self):
"""Implementation of the "load" task.
It loads the TF data that resides in the directory where the "convert" task
deliver its results.
During loading there are additional checks. If they succeed, we have evidence
that we have a valid TF dataset.
Also, during the first load intensive pre-computation of TF data takes place,
the results of which will be cached in the invisible `.tf` directory there.
That makes the TF data ready to be loaded fast, next time it is needed.
Returns
-------
boolean
Whether the loading was successful.
"""
if not self.importOK():
return
if not self.good:
return
tfDir = self.tfDir
tfVersion = self.tfVersion
chosenDoc = self.chosenDoc
verbose = self.verbose
silent = AUTO if verbose == 1 else TERSE if verbose == 0 else DEEP
if not dirExists(tfDir):
console(f"Directory {ux(tfDir)} does not exist.")
console("No TF found, nothing to load")
self.good = False
return
docDirs = sorted(dirContents(tfDir)[1], key=lambda x: (x[0], int(x[1:])))
for doc in docDirs:
if chosenDoc is not None and chosenDoc != doc:
continue
tfPath = f"{tfDir}/{doc}/{tfVersion}"
msg = f"\t\t{doc:>5} ... "
TF = Fabric(locations=[tfPath], silent=silent)
allFeatures = TF.explore(silent=True, show=True)
loadableFeatures = allFeatures["nodes"] + allFeatures["edges"]
api = TF.load(loadableFeatures, silent=silent)
if api:
if not silent:
console(f"{msg}{api.F.otype.maxSlot:>8} slots")
self.good = True
else:
console(f"{msg}XX", error=True)
self.good = False
def appTask(self):
"""Implementation of the "app" task.
It creates / updates a corpus-specific app plus specific documentation files.
There should be a valid TF dataset in place, because some
settings in the app derive from it.
It will also read custom additions that are present in the target app directory.
These files are:
* `about_custom.md`:
A markdown file with specific colophon information about the dataset.
In the generated file, this information will be put at the start.
* `transcription_custom.md`:
A markdown file with specific encoding information about the dataset.
In the generated file, this information will be put at the start.
* `config_custom.yaml`:
A YAML file with configuration data that will be *merged* into the generated
config.yaml.
* `app_custom.py`:
A python file with named snippets of code to be inserted
at corresponding places in the generated `app.py`
* `display_custom.css`:
Additional CSS definitions that will be appended to the generated
`display.css`.
If the TF app for this resource needs custom code, this is the way to retain
that code between automatic generation of files.
Returns
-------
boolean
Whether the operation was successful.
"""
if not self.importOK():
return
if not self.good:
return
verbose = self.verbose
refDir = self.refDir
myDir = self.myDir
tfVersion = self.tfVersion
# key | parentDir | file | file-default | template based
# if parentDir is a tuple, the first part is the parentDir of the source
# end the second part is the parentDir of the destination
itemSpecs = (("config", "app", APP_CONFIG, "config2.yaml", False),)
genTasks = {
s[0]: dict(parentDir=s[1], file=s[2], fileOrig=s[3], justCopy=s[4])
for s in itemSpecs
}
version = tfVersion
def createConfig(sourceText, customText):
text = sourceText.replace("«version»", f'"{version}"')
settings = readYaml(text=text, plain=True)
settings.setdefault("provenanceSpec", {})["branch"] = BRANCH_DEFAULT_NEW
customSettings = (
{} if not customText else readYaml(text=customText, plain=True)
)
mergeDict(settings, customSettings)
text = writeYaml(settings)
return text
if verbose >= 0:
console("App updating ...")
for name, info in genTasks.items():
parentDir = info["parentDir"]
(sourceBit, targetBit) = (
parentDir if type(parentDir) is tuple else (parentDir, parentDir)
)
file = info[FILE]
fileOrig = info["fileOrig"]
fileParts = file.rsplit(".", 1)
if len(fileParts) == 1:
fileParts = [file, ""]
(fileBase, fileExt) = fileParts
if fileExt:
fileExt = f".{fileExt}"
targetDir = f"{refDir}/{targetBit}"
itemTarget = f"{targetDir}/{file}"
itemCustom = f"{targetDir}/{fileBase}_custom{fileExt}"
itemPre = f"{targetDir}/{fileBase}_orig{fileExt}"
justCopy = info["justCopy"]
sourceDir = f"{myDir}/{sourceBit}"
itemSource = f"{sourceDir}/{fileOrig}"
# If there is custom info, we do not have to preserve the previous version.
# Otherwise we save the target before overwriting it; # unless it
# has been saved before
preExists = fileExists(itemPre)
targetExists = fileExists(itemTarget)
customExists = fileExists(itemCustom)
msg = ""
if justCopy:
if targetExists:
msg = "(already exists, not overwritten)"
safe = False
else:
msg = "(copied)"
safe = True
else:
if targetExists:
if customExists:
msg = "(generated with custom info)"
else:
if preExists:
msg = "(no custom info, older original exists)"
else:
msg = "(no custom info, original preserved)"
fileCopy(itemTarget, itemPre)
else:
msg = "(created)"
initTree(targetDir, fresh=False)
if justCopy:
if safe:
fileCopy(itemSource, itemTarget)
else:
if fileExists(itemSource):
with fileOpen(itemSource) as fh:
sourceText = fh.read()
else:
sourceText = ""
if fileExists(itemCustom):
with fileOpen(itemCustom) as fh:
customText = fh.read()
else:
customText = ""
targetText = (
createConfig
if name == "config"
else fileCopy # this cannot occur because justCopy is False
)(sourceText, customText)
with fileOpen(itemTarget, mode="w") as fh:
fh.write(targetText)
if verbose >= 0:
console(f"\t{ux(itemTarget):30} {msg}")
if verbose >= 0:
console("Done")
else:
console("App updated")
# START the TEXT-FABRIC BROWSER on this CORPUS
def browseTask(self):
"""Implementation of the "browse" task.
It gives a shell command to start the TF browser on
the newly created corpus.
There should be a valid TF dataset and app configuration in place
Returns
-------
boolean
Whether the operation was successful.
"""
if not self.importOK():
return
if not self.good:
return
org = self.org
repo = self.repo
relative = self.relative
backend = self.backend
tfVersion = self.tfVersion
chosenDoc = self.chosenDoc
if chosenDoc is None:
console(
"You have to choose a particular document by passing the doc parameter"
)
return
backendOpt = "" if backend == "github" else f"--backend={backend}"
versionOpt = f"--version={tfVersion}"
versionOpt = ""
docOpt = f"--relative=tf/{chosenDoc}"
try:
run(
(
f"tf {org}/{repo}{relative}:clone {docOpt} --checkout=clone "
f"{versionOpt} {backendOpt}"
),
shell=True,
)
except KeyboardInterrupt:
pass
def task(
self,
convert=False,
load=False,
app=False,
browse=False,
verbose=None,
doc=None,
):
"""Carry out any task, possibly modified by any flag.
This is a higher level function that can execute a selection of tasks.
The tasks will be executed in a fixed order:
`convert`, `load`, `app`, `browse`.
But you can select which one(s) must be executed.
If multiple tasks must be executed and one fails, the subsequent tasks
will not be executed.
Parameters
----------
convert: boolean, optional False
Whether to carry out the `convert` task.
load: boolean, optional False
Whether to carry out the `load` task.
app: boolean, optional False
Whether to carry out the `app` task.
browse: boolean, optional False
Whether to carry out the `browse` task"
verbose: integer, optional -1
Produce no (-1), some (0) or many (1) progress and reporting messages
Returns
-------
boolean
Whether all tasks have executed successfully.
"""
if not self.importOK():
return
if verbose is not None:
verboseSav = self.verbose
self.verbose = verbose
if doc is not None:
docSav = self.chosenDoc
self.chosenDoc = doc
if not self.good:
return False
for condition, method, kwargs in (
(convert, self.convertTask, {}),
(load, self.loadTask, {}),
(app, self.appTask, {}),
(browse, self.browseTask, {}),
):
if condition:
method(**kwargs)
if not self.good:
break
if verbose is not None:
self.verbose = verboseSav
if doc is not None:
self.chosenDoc = docSav
return self.good
def main():
(good, tasks, params, flags) = readArgs(
"pagexml", HELP, TASKS, PARAMS, FLAGS, notInAll=TASKS_EXCLUDED
)
if not good:
return False
Obj = PageXML(**params, **flags)
Obj.task(**tasks, **flags)
return Obj.good
if __name__ == "__main__":
sys.exit(0 if main() else 1)
Functions
def diverge(cv, s, rtx, rsp, ltx, lsp)
def emptySlot(cv)
def linebreakSlot(cv)
def main()
def tokenLogic(cv, s, token, hangover, isFirst, isSecondLast, isLast)
def walkObject(cv, cur, xObj)
-
Internal function to deal with a single element.
Will be called recursively.
Parameters
cv
:object
- The converter object, needed to issue actions.
cur
:dict
-
Various pieces of data collected during walking and relevant for some next steps in the walk.
The subdictionary
cur["node"]
is used to store the currently generated nodes by node type. bj
xode
:object
- An PageXML object.
Classes
class PageXML (sourceDir, repoDir, source='', reportDir='', tf='latest', verbose=-1, doc=None)
-
Converts PageXML to TF.
Below we describe how to control the conversion machinery.
Based on current directory from where the script is called, it defines all the ingredients to carry out a
tf.convert.walker
conversion of the PageXML input.This function is assumed to work in the context of a repository, i.e. a directory on your computer relative to which the input directory exists, and various output directories:
tf
,app
,docs
.The
repoDir
must be at~/backend/org/repo/relative
where
~
is your home directory;backend
is an online back-end name, likegithub
,gitlab
,git.huc.knaw.nl
;org
is an organization, person, or group in the back-end;repo
is a repository in theorg
.relative
is a directory path within the repo (0 or more components)
This is only about the directory structure on your local computer; it is not required that you have online incarnations of your repository in that back-end. Even your local repository does not have to be a git repository.
The only thing that matters is that the full path to your repo can be parsed as a sequence of
home/backend/org/repo/relative
.Relative to this directory the program expects and creates input / output directories.
source/version directory
The source directory is specified by
sourceDir
, and within it are version directories.Document directories
These are the top-level directories within the version directories.
They correspond to individual documents. Documents typically contain a set of pages.
Input directories per document
image
: contain the scan imagesmeta
: contain metadata filespage
: contain the PageXML files
The files in
image
andpage
have names that consist of a 4-digit number with leading zeros, and any two files with the same name inimage
andpage
represent the same document.Output directories
tf
The directory under which the TF output file (with extension
.tf
) are placed. If it does not exist, it will be created. The TF files will be generated in a folder named by a version number, passed astfVersion
.app
anddocs
Location of additional TF app configuration and documentation files. If they do not exist, they will be created with some sensible default settings and generated documentation. These settings can be overridden in the
app/config_custom.yaml
file. Also a defaultdisplay.css
file and a logo are added.docs
Location of additional documentation. This can be generated or hand-written material, or a mixture of the two.
Parameters
sourceDir
:string
- The location of the source directory
repoDir
:string
- The location of the target repo where the TF data is generated.
source
:string
, optional""
-
If empty, use the latest version under the
source
directory with sources. Otherwise it should be a valid integer, and it is the index in the sorted list of versions there.0
orlatest
: latest version;-1
,-2
, … : previous version, version before previous, …;1
,2
, …: first version, second version, ....- everything else that is not a number is an explicit version
If the value cannot be parsed as an integer, it is used as the exact version name.
tf
:string
, optional""
-
If empty, the TF version used will be the latest one under the
tf
directory.If it can be parsed as the integers 1, 2, or 3 it will bump the latest relevant TF version:
0
orlatest
: overwrite the latest version1
will bump the major version2
will bump the intermediate version3
will bump the minor version- everything else is an explicit version
Otherwise, the value is taken as the exact version name.
verbose
:integer
, optional-1
- Produce no (-1), some (0) or many (1) progress and reporting messages
Expand source code Browse git
class PageXML(CheckImport): def __init__( self, sourceDir, repoDir, source=PARAMS["sourceBase"][1], reportDir=PARAMS["reportDir"][1], tf=PARAMS["tf"][1], verbose=FLAGS["verbose"][1], doc=FLAGS["doc"][1], ): """Converts PageXML to TF. Below we describe how to control the conversion machinery. Based on current directory from where the script is called, it defines all the ingredients to carry out a `tf.convert.walker` conversion of the PageXML input. This function is assumed to work in the context of a repository, i.e. a directory on your computer relative to which the input directory exists, and various output directories: `tf`, `app`, `docs`. The `repoDir` must be at ``` ~/backend/org/repo/relative ``` where * `~` is your home directory; * `backend` is an online back-end name, like `github`, `gitlab`, `git.huc.knaw.nl`; * `org` is an organization, person, or group in the back-end; * `repo` is a repository in the `org`. * `relative` is a directory path within the repo (0 or more components) This is only about the directory structure on your local computer; it is not required that you have online incarnations of your repository in that back-end. Even your local repository does not have to be a git repository. The only thing that matters is that the full path to your repo can be parsed as a sequence of `home/backend/org/repo/relative`. Relative to this directory the program expects and creates input / output directories. ## source/version directory The source directory is specified by `sourceDir`, and within it are version directories. ## Document directories These are the top-level directories within the version directories. They correspond to individual documents. Documents typically contain a set of pages. ## Input directories per document * `image`: contain the scan images * `meta`: contain metadata files * `page`: contain the PageXML files The files in `image` and `page` have names that consist of a 4-digit number with leading zeros, and any two files with the same name in `image` and `page` represent the same document. ## Output directories ### `tf` The directory under which the TF output file (with extension `.tf`) are placed. If it does not exist, it will be created. The TF files will be generated in a folder named by a version number, passed as `tfVersion`. ### `app` and `docs` Location of additional TF app configuration and documentation files. If they do not exist, they will be created with some sensible default settings and generated documentation. These settings can be overridden in the `app/config_custom.yaml` file. Also a default `display.css` file and a logo are added. ### `docs` Location of additional documentation. This can be generated or hand-written material, or a mixture of the two. Parameters ---------- sourceDir: string The location of the source directory repoDir: string The location of the target repo where the TF data is generated. source: string, optional "" If empty, use the latest version under the `source` directory with sources. Otherwise it should be a valid integer, and it is the index in the sorted list of versions there. * `0` or `latest`: latest version; * `-1`, `-2`, ... : previous version, version before previous, ...; * `1`, `2`, ...: first version, second version, .... * everything else that is not a number is an explicit version If the value cannot be parsed as an integer, it is used as the exact version name. tf: string, optional "" If empty, the TF version used will be the latest one under the `tf` directory. If it can be parsed as the integers 1, 2, or 3 it will bump the latest relevant TF version: * `0` or `latest`: overwrite the latest version * `1` will bump the major version * `2` will bump the intermediate version * `3` will bump the minor version * everything else is an explicit version Otherwise, the value is taken as the exact version name. verbose: integer, optional -1 Produce no (-1), some (0) or many (1) progress and reporting messages """ super().__init__("pagexml") if self.importOK(hint=True): pagexml = self.importGet() self.parsePage = pagexml.parse_pagexml_file else: return self.good = True self.verbose = verbose self.chosenDoc = doc (backend, org, repo, relative) = getLocation(targetDir=ex(repoDir)) if any(s is None for s in (backend, org, repo, relative)): console( ( "Not working in a repo: " f"backend={backend} org={org} repo={repo} relative={relative}" ), error=True ) self.good = False return if verbose == 1: console( f"Working in repository {org}/{repo}{relative} in back-end {backend}" ) base = ex(f"~/{backend}") repoDir = f"{base}/{org}/{repo}" refDir = f"{repoDir}{relative}" convertSpec = f"{refDir}/pagexml.yaml" settings = readYaml(asFile=convertSpec, plain=False) self.settings = settings appDir = f"{refDir}/app" metaDir = f"{refDir}/meta" tfDir = f"{refDir}/tf" tfVersionFile = f"{refDir}/tfVersions.txt" sourceVersions = sorted(dirContents(metaDir)[1], key=versionSort) nSourceVersions = len(sourceVersions) if source in {"latest", "", "0", 0} or str(source).lstrip("-").isdecimal(): sourceIndex = (0 if source == "latest" else int(source)) - 1 try: sourceVersion = sourceVersions[sourceIndex] except Exception: absIndex = sourceIndex + (nSourceVersions if sourceIndex < 0 else 0) + 1 console( ( f"no item in {absIndex} in {nSourceVersions} source versions " f"in {ux(metaDir)}" ) if len(sourceVersions) else f"no source versions in {ux(metaDir)}", error=True, ) self.good = False return else: sourceVersion = source metaPath = f"{metaDir}/{sourceVersion}" if not dirExists(metaPath): console( f"source version {sourceVersion} does not exists in {ux(metaDir)}", error=True, ) self.good = False return sourceStatuses = {tv: i for (i, tv) in enumerate(reversed(sourceVersions))} sourceStatus = sourceStatuses[sourceVersion] sourceStatusRep = ( "most recent" if sourceStatus == 0 else "previous" if sourceStatus == 1 else f"{sourceStatus - 1} before previous" ) if sourceStatus == len(sourceVersions) - 1 and len(sourceVersions) > 1: sourceStatusRep = "oldest" if verbose >= 0: console(f"PageXML data version is {sourceVersion} ({sourceStatusRep})") if fileExists(tfVersionFile): with fileOpen(tfVersionFile) as fh: latestTfVersion = fh.read().strip() or "0.0.0" else: latestTfVersion = "0.0.0" with fileOpen(tfVersionFile, mode="w") as fh: fh.write(latestTfVersion) writeVersion = False if tf in {"latest", "", "0", 0}: tfVersion = latestTfVersion vRep = "latest" elif tf in {"1", "2", "3", 1, 2, 3}: bump = int(tf) parts = latestTfVersion.split(".") def getVer(b): return int(parts[b]) def setVer(b, val): parts[b] = val if bump > len(parts): console( f"Cannot bump part {bump} of latest TF version {latestTfVersion}", error=True, ) self.good = False return else: b1 = bump - 1 old = getVer(b1) setVer(b1, old + 1) for b in range(b1 + 1, len(parts)): setVer(b, 0) tfVersion = ".".join(str(p) for p in parts) vRep = ( "major" if bump == 1 else "intermediate" if bump == 2 else "minor" ) vRep = f"next {vRep}" writeVersion = True else: tfVersion = tf status = "existing" if dirExists(f"{tfDir}/{tfVersion}") else "new" vRep = f"explicit {status}" writeVersion = True if writeVersion: with fileOpen(tfVersionFile, mode="w") as fh: fh.write(tfVersion) if verbose >= 0: console(f"TF data version is {tfVersion} ({vRep})") self.refDir = refDir self.sourceVersion = sourceVersion self.sourceDir = ex(sourceDir) self.tfVersion = tfVersion self.tfDir = tfDir self.appDir = appDir self.backend = backend self.org = org self.repo = repo self.relative = relative myDir = dirNm(abspath(__file__)) self.myDir = myDir self.slotType = TOKEN levelNames = ("doc", "page", "line") sectionFeatures = ",".join(levelNames) sectionTypes = ",".join(levelNames) textFeatures = "{str}{after}" rawTextFeatures = "{rstr/str}{rafter/after}" otext = { "fmt:text-orig-full": rawTextFeatures, "fmt:text-logic-full": textFeatures, "sectionFeatures": sectionFeatures, "sectionTypes": sectionTypes, } self.otext = otext self.generic = dict( project="TransLatin", conversion="KNAW/HuC TeamText", conversionTF="Dirk Roorda", ) featureMeta = dict( id=dict(description="the id of the corresponding pagexml object"), x=dict(description="the leftmost x coordinate of the pagexml object"), y=dict(description="the lowest y coordinate of the pagexml object"), w=dict(description="the width of the pagexml object"), h=dict(description="the height of the pagexml object"), rstr=dict( description=( "the physical text of a token, " "if it is different from the logical text" ), ), str=dict(description="the logical text of a token"), rafter=dict( description=( "the physical text after a token till the next token, " "if it is different from the logical after-text" ), ), after=dict( description=( "the logical text after a token till the next logical token," ), ), page=dict(description="the number of the page within the document"), line=dict(description="the number of the line within the page"), ) self.intFeatures = {"page", "line", "x", "y", "w", "h"} customFeatureMeta = settings.featureMeta or {} for k, v in customFeatureMeta.items(): featureMeta[k] = v self.featureMeta = featureMeta def getDirector(self, doc, docMeta, pageSource, pageFiles): """Factory for the director function. The `tf.convert.walker` relies on a corpus dependent `director` function that walks through the source data and spits out actions that produces the TF dataset. Also some special additions need to be programmed, such as an extra section level, word boundaries, etc. We collect all needed data, store it, and define a local director function that has access to this data. Returns ------- function The local director function that has been constructed. """ parsePage = self.parsePage def director(cv): """Director function. Here we program a walk through the PageXML sources. At every step of the walk we fire some actions that build TF nodes and assign features for them. Parameters ---------- cv: object The converter object, needed to issue actions. """ featureMeta = self.featureMeta cur = {} cur[NODE] = {} nd = cv.node(DOC) cur[NODE][DOC] = nd cv.feature(nd, doc=doc, **docMeta) cur["hangover"] = None for pageFile in pageFiles: pagePath = f"{pageSource}/{pageFile}" pageNr = int(pageFile.split(".", 1)[0]) pageDoc = parsePage(pagePath) cur["page"] = pageNr cur["line"] = 0 walkObject(cv, cur, pageDoc) hangover = cur["hangover"] if hangover is not None: diverge(cv, *hangover) cv.terminate(nd) for fName in featureMeta: if not cv.occurs(fName): cv.meta(fName) return director def getConverter(self, doc): """Initializes a converter. Returns ------- object The `tf.convert.walker.CV` converter object, initialized. """ verbose = self.verbose tfDir = self.tfDir tfVersion = self.tfVersion silent = AUTO if verbose == 1 else TERSE if verbose == 0 else DEEP TF = Fabric(locations=f"{tfDir}/{doc}/{tfVersion}", silent=silent) return CV(TF, silent=silent) def convertTask(self): """Implementation of the "convert" task. It sets up the `tf.convert.walker` machinery and runs it. Returns ------- boolean Whether the conversion was successful. """ if not self.importOK(): return if not self.good: return verbose = self.verbose chosenDoc = self.chosenDoc slotType = self.slotType generic = self.generic otext = self.otext featureMeta = self.featureMeta intFeatures = self.intFeatures sourceDir = self.sourceDir sourceVersion = self.sourceVersion tfDir = self.tfDir tfVersion = self.tfVersion if verbose == 1: console( f"PageXML to TF converting: {ux(sourceDir)}/Mxx/{sourceVersion}" f" ==> {ux(tfDir)}/Mxx/{tfVersion}" ) initTree(tfDir, fresh=True, gentle=True) docDirs = sorted(dirContents(sourceDir)[1], key=lambda x: (x[0], int(x[1:]))) for doc in docDirs: if chosenDoc is not None and chosenDoc != doc: continue pageSource = f"{sourceDir}/{doc}/{sourceVersion}/page" pageFiles = sorted(dirContents(pageSource)[0]) if len(pageFiles) == 0: continue console(f"\t\t{doc:>5} ... {len(pageFiles):>8} pages") metaFile = f"{sourceDir}/{doc}/{sourceVersion}/meta/metadata.yaml" docMeta = readYaml(asFile=metaFile) docMeta.title = (docMeta.title or "").replace("_", " ") docMeta.url = (docMeta.url or "").replace("&", "&") cv = self.getConverter(doc) if not cv.walk( self.getDirector(doc, docMeta, pageSource, pageFiles), slotType, otext=otext, generic=generic, intFeatures=intFeatures, featureMeta=featureMeta, generateTf=True, ): self.good = False def loadTask(self): """Implementation of the "load" task. It loads the TF data that resides in the directory where the "convert" task deliver its results. During loading there are additional checks. If they succeed, we have evidence that we have a valid TF dataset. Also, during the first load intensive pre-computation of TF data takes place, the results of which will be cached in the invisible `.tf` directory there. That makes the TF data ready to be loaded fast, next time it is needed. Returns ------- boolean Whether the loading was successful. """ if not self.importOK(): return if not self.good: return tfDir = self.tfDir tfVersion = self.tfVersion chosenDoc = self.chosenDoc verbose = self.verbose silent = AUTO if verbose == 1 else TERSE if verbose == 0 else DEEP if not dirExists(tfDir): console(f"Directory {ux(tfDir)} does not exist.") console("No TF found, nothing to load") self.good = False return docDirs = sorted(dirContents(tfDir)[1], key=lambda x: (x[0], int(x[1:]))) for doc in docDirs: if chosenDoc is not None and chosenDoc != doc: continue tfPath = f"{tfDir}/{doc}/{tfVersion}" msg = f"\t\t{doc:>5} ... " TF = Fabric(locations=[tfPath], silent=silent) allFeatures = TF.explore(silent=True, show=True) loadableFeatures = allFeatures["nodes"] + allFeatures["edges"] api = TF.load(loadableFeatures, silent=silent) if api: if not silent: console(f"{msg}{api.F.otype.maxSlot:>8} slots") self.good = True else: console(f"{msg}XX", error=True) self.good = False def appTask(self): """Implementation of the "app" task. It creates / updates a corpus-specific app plus specific documentation files. There should be a valid TF dataset in place, because some settings in the app derive from it. It will also read custom additions that are present in the target app directory. These files are: * `about_custom.md`: A markdown file with specific colophon information about the dataset. In the generated file, this information will be put at the start. * `transcription_custom.md`: A markdown file with specific encoding information about the dataset. In the generated file, this information will be put at the start. * `config_custom.yaml`: A YAML file with configuration data that will be *merged* into the generated config.yaml. * `app_custom.py`: A python file with named snippets of code to be inserted at corresponding places in the generated `app.py` * `display_custom.css`: Additional CSS definitions that will be appended to the generated `display.css`. If the TF app for this resource needs custom code, this is the way to retain that code between automatic generation of files. Returns ------- boolean Whether the operation was successful. """ if not self.importOK(): return if not self.good: return verbose = self.verbose refDir = self.refDir myDir = self.myDir tfVersion = self.tfVersion # key | parentDir | file | file-default | template based # if parentDir is a tuple, the first part is the parentDir of the source # end the second part is the parentDir of the destination itemSpecs = (("config", "app", APP_CONFIG, "config2.yaml", False),) genTasks = { s[0]: dict(parentDir=s[1], file=s[2], fileOrig=s[3], justCopy=s[4]) for s in itemSpecs } version = tfVersion def createConfig(sourceText, customText): text = sourceText.replace("«version»", f'"{version}"') settings = readYaml(text=text, plain=True) settings.setdefault("provenanceSpec", {})["branch"] = BRANCH_DEFAULT_NEW customSettings = ( {} if not customText else readYaml(text=customText, plain=True) ) mergeDict(settings, customSettings) text = writeYaml(settings) return text if verbose >= 0: console("App updating ...") for name, info in genTasks.items(): parentDir = info["parentDir"] (sourceBit, targetBit) = ( parentDir if type(parentDir) is tuple else (parentDir, parentDir) ) file = info[FILE] fileOrig = info["fileOrig"] fileParts = file.rsplit(".", 1) if len(fileParts) == 1: fileParts = [file, ""] (fileBase, fileExt) = fileParts if fileExt: fileExt = f".{fileExt}" targetDir = f"{refDir}/{targetBit}" itemTarget = f"{targetDir}/{file}" itemCustom = f"{targetDir}/{fileBase}_custom{fileExt}" itemPre = f"{targetDir}/{fileBase}_orig{fileExt}" justCopy = info["justCopy"] sourceDir = f"{myDir}/{sourceBit}" itemSource = f"{sourceDir}/{fileOrig}" # If there is custom info, we do not have to preserve the previous version. # Otherwise we save the target before overwriting it; # unless it # has been saved before preExists = fileExists(itemPre) targetExists = fileExists(itemTarget) customExists = fileExists(itemCustom) msg = "" if justCopy: if targetExists: msg = "(already exists, not overwritten)" safe = False else: msg = "(copied)" safe = True else: if targetExists: if customExists: msg = "(generated with custom info)" else: if preExists: msg = "(no custom info, older original exists)" else: msg = "(no custom info, original preserved)" fileCopy(itemTarget, itemPre) else: msg = "(created)" initTree(targetDir, fresh=False) if justCopy: if safe: fileCopy(itemSource, itemTarget) else: if fileExists(itemSource): with fileOpen(itemSource) as fh: sourceText = fh.read() else: sourceText = "" if fileExists(itemCustom): with fileOpen(itemCustom) as fh: customText = fh.read() else: customText = "" targetText = ( createConfig if name == "config" else fileCopy # this cannot occur because justCopy is False )(sourceText, customText) with fileOpen(itemTarget, mode="w") as fh: fh.write(targetText) if verbose >= 0: console(f"\t{ux(itemTarget):30} {msg}") if verbose >= 0: console("Done") else: console("App updated") # START the TEXT-FABRIC BROWSER on this CORPUS def browseTask(self): """Implementation of the "browse" task. It gives a shell command to start the TF browser on the newly created corpus. There should be a valid TF dataset and app configuration in place Returns ------- boolean Whether the operation was successful. """ if not self.importOK(): return if not self.good: return org = self.org repo = self.repo relative = self.relative backend = self.backend tfVersion = self.tfVersion chosenDoc = self.chosenDoc if chosenDoc is None: console( "You have to choose a particular document by passing the doc parameter" ) return backendOpt = "" if backend == "github" else f"--backend={backend}" versionOpt = f"--version={tfVersion}" versionOpt = "" docOpt = f"--relative=tf/{chosenDoc}" try: run( ( f"tf {org}/{repo}{relative}:clone {docOpt} --checkout=clone " f"{versionOpt} {backendOpt}" ), shell=True, ) except KeyboardInterrupt: pass def task( self, convert=False, load=False, app=False, browse=False, verbose=None, doc=None, ): """Carry out any task, possibly modified by any flag. This is a higher level function that can execute a selection of tasks. The tasks will be executed in a fixed order: `convert`, `load`, `app`, `browse`. But you can select which one(s) must be executed. If multiple tasks must be executed and one fails, the subsequent tasks will not be executed. Parameters ---------- convert: boolean, optional False Whether to carry out the `convert` task. load: boolean, optional False Whether to carry out the `load` task. app: boolean, optional False Whether to carry out the `app` task. browse: boolean, optional False Whether to carry out the `browse` task" verbose: integer, optional -1 Produce no (-1), some (0) or many (1) progress and reporting messages Returns ------- boolean Whether all tasks have executed successfully. """ if not self.importOK(): return if verbose is not None: verboseSav = self.verbose self.verbose = verbose if doc is not None: docSav = self.chosenDoc self.chosenDoc = doc if not self.good: return False for condition, method, kwargs in ( (convert, self.convertTask, {}), (load, self.loadTask, {}), (app, self.appTask, {}), (browse, self.browseTask, {}), ): if condition: method(**kwargs) if not self.good: break if verbose is not None: self.verbose = verboseSav if doc is not None: self.chosenDoc = docSav return self.good
Ancestors
Methods
def appTask(self)
-
Implementation of the "app" task.
It creates / updates a corpus-specific app plus specific documentation files. There should be a valid TF dataset in place, because some settings in the app derive from it.
It will also read custom additions that are present in the target app directory. These files are:
about_custom.md
: A markdown file with specific colophon information about the dataset. In the generated file, this information will be put at the start.transcription_custom.md
: A markdown file with specific encoding information about the dataset. In the generated file, this information will be put at the start.config_custom.yaml
: A YAML file with configuration data that will be merged into the generated config.yaml.app_custom.py
: A python file with named snippets of code to be inserted at corresponding places in the generatedapp.py
display_custom.css
: Additional CSS definitions that will be appended to the generateddisplay.css
.
If the TF app for this resource needs custom code, this is the way to retain that code between automatic generation of files.
Returns
boolean
- Whether the operation was successful.
def browseTask(self)
-
Implementation of the "browse" task.
It gives a shell command to start the TF browser on the newly created corpus. There should be a valid TF dataset and app configuration in place
Returns
boolean
- Whether the operation was successful.
def convertTask(self)
-
Implementation of the "convert" task.
It sets up the
tf.convert.walker
machinery and runs it.Returns
boolean
- Whether the conversion was successful.
def getConverter(self, doc)
def getDirector(self, doc, docMeta, pageSource, pageFiles)
-
Factory for the director function.
The
tf.convert.walker
relies on a corpus dependentdirector
function that walks through the source data and spits out actions that produces the TF dataset.Also some special additions need to be programmed, such as an extra section level, word boundaries, etc.
We collect all needed data, store it, and define a local director function that has access to this data.
Returns
function
- The local director function that has been constructed.
def loadTask(self)
-
Implementation of the "load" task.
It loads the TF data that resides in the directory where the "convert" task deliver its results.
During loading there are additional checks. If they succeed, we have evidence that we have a valid TF dataset.
Also, during the first load intensive pre-computation of TF data takes place, the results of which will be cached in the invisible
.tf
directory there.That makes the TF data ready to be loaded fast, next time it is needed.
Returns
boolean
- Whether the loading was successful.
def task(self, convert=False, load=False, app=False, browse=False, verbose=None, doc=None)
-
Carry out any task, possibly modified by any flag.
This is a higher level function that can execute a selection of tasks.
The tasks will be executed in a fixed order:
convert
,load
,app
,browse
. But you can select which one(s) must be executed.If multiple tasks must be executed and one fails, the subsequent tasks will not be executed.
Parameters
convert
:boolean
, optionalFalse
- Whether to carry out the
convert
task. load
:boolean
, optionalFalse
- Whether to carry out the
load
task. app
:boolean
, optionalFalse
- Whether to carry out the
app
task. browse
:boolean
, optionalFalse
- Whether to carry out the
browse
task" verbose
:integer
, optional-1
- Produce no (-1), some (0) or many (1) progress and reporting messages
Returns
boolean
- Whether all tasks have executed successfully.
Inherited members